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Abstract Long-range NMR data, namely residual dipolar

couplings (RDCs) from external alignment and paramag-

netic data, are becoming increasingly popular for the

characterization of conformational heterogeneity of mul-

tidomain biomacromolecules and protein complexes. The

question addressed here is how much information is con-

tained in these averaged data. We have analyzed and

compared the information content of conformationally

averaged RDCs caused by steric alignment and of both

RDCs and pseudocontact shifts caused by paramagnetic

alignment, and found that, despite the substantial differ-

ences, they contain a similar amount of information. Fur-

thermore, using several synthetic tests we find that both

sets of data are equally good towards recovering the major

state(s) in conformational distributions.

Keywords Paramagnetic NMR � Residual dipolar
couplings � Two-domain proteins � Protein mobility �
Conformational variability

Introduction

Biological macromolecules are inherently flexible objects

and often accomplish their task through extensive confor-

mational rearrangement (Sicheri and Kuriyan 1997; Pick-

ford and Campbell 2004; Zhang and Zuiderweg 2004;

Tonks 2006; Chuang et al. 2010). Characterization of such

rearrangements and the relevant conformational states can

provide important clues about the mechanisms underlying

biological function. This however is a challenging task

because the system is underdetermined, implying a large

degeneracy in the reconstructed solutions, and requires

extensive experimental work often involving multiple

techniques (Bonvin and Brunger 1996; Choy and Forman-

Kay 2001; Svergun et al. 2001; Burgi et al. 2001; Clore and

Schwieters 2004; Schroeder et al. 2004; Iwahara et al.

2004; Bertini et al. 2004a; Blackledge 2005; Lindorff-

Larsen et al. 2005; Fragai et al. 2006; Tolman and Ruan

2006; Boehr et al. 2006; Ryabov and Fushman 2006; Chen

et al. 2007; Bernadò et al. 2007; Bertini et al. 2007; Ryabov

and Fushman 2007; Lange et al. 2008; Hulsker et al. 2008;

Korzhnev and Kay 2008; Nodet et al. 2009; Boehr et al.

2009; Stelzer et al. 2009; Huang and Grzesiek 2010; Fisher

et al. 2010; Bashir et al. 2010; Rinnenthal et al. 2011;

Bothe et al. 2011; Fisher and Stultz 2011; Berlin et al.

2013; Russo et al. 2013; Guerry et al. 2013; Kukic et al.

2014; Ravera et al. 2014; Torchia 2015). Therefore, it is

important to know the information content provided by

various experimental methods in order to decide on an

optimal set of experiments a priori.
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Residual dipolar couplings (RDC; Lohman and Maclean

1978) are widely used as a source of information on

biomolecular structure and dynamics (Tolman 2001; Tol-

man and Ruan 2006; Berlin et al. 2013; Ravera et al. 2014).

They arise in the presence of partial molecular orientation,

which can be achieved by interactions with alignment

media surrounding the molecule (Tolman et al. 1995;

Tjandra and Bax 1997; Hansen et al. 1998; Losonczi and

Prestegard 1998; Ramirez and Bax 1998; Wang et al. 1998;

Al-Hashimi et al. 2000; Prestegard et al. 2000; Zweck-

stetter and Bax 2001; Lakomek et al. 2008) and/or by the

preferential orientation of the molecule itself in a magnetic

field due to its magnetic susceptibility anisotropy (Lohman

and Maclean 1978; Tolman et al. 1995; Zhang et al. 2003;

Latham et al. 2008; Ravera et al. 2014; Musiani et al.

2014). RDCs obtained by alignment induced by an external

orienting medium, herein referred to as diamagnetic RDCs

(dRDC), depend on the nature of the interactions of the

biomolecule with the medium. These interactions can be

steric and/or electrostatic and, because of this, dRDC are

reporters also on the overall shape of the macromolecule

and/or its charge distribution (Zweckstetter and Bax 2000;

Zweckstetter 2008; Berlin et al. 2009; Maltsev et al. 2014).

On the other hand, RDCs caused by molecular self-align-

ment, often induced by the presence of a paramagnetic

center with an anisotropic magnetic susceptibility, herein

termed paramagnetic RDCs (pRDC), only depend on the

orientation of the internuclear vectors in the reference

frame of the magnetic susceptibility tensor and are gener-

ally independent of the shape of the molecule. However,

the presence of an anisotropic magnetic susceptibility also

gives rise to pseudocontact shifts (PCS; Kurland and

McGarvey 1970), which are reporters on the positions of

the nuclei in the principal axis frame of the magnetic

susceptibility tensor centered on the paramagnetic site, and

therefore contain information about the structure/shape of a

molecule. The use of paramagnetism-induced restraints

(Gochin and Roder 1995a, b; Banci et al. 1996, 1998;

Bertini et al. 2001a; Gaponenko et al. 2004; Bertini et al.

2005; Diaz-Moreno et al. 2005; Jensen et al. 2006; Bertini

et al. 2008; Schmitz et al. 2012; Yagi et al. 2013b) is

becoming increasingly popular because of the introduction

of lanthanide binding tags (Barthelmes et al. 2011;

Wöhnert et al. 2003; Rodriguez-Castañeda et al. 2006; Su

et al. 2006; John and Otting 2007; Pintacuda et al. 2007;

Zhuang et al. 2008; Su et al. 2008a, b; Keizers et al. 2008;

Häussinger et al. 2009; Su and Otting 2010; Hass et al.

2010; Man et al. 2010; Das Gupta et al. 2011; Saio et al.

2011; Swarbrick et al. 2011a, b; Bertini et al. 2012a; Liu

et al. 2012; Kobashigawa et al. 2012; Cerofolini et al.

2013; Yagi et al. 2013a; Gempf et al. 2013; Loh et al.

2013), that extend the range of applications from param-

agnetic metalloproteins (Banci et al. 1996, 1997; or

proteins in which the naturally occurring metal can be

replaced by a paramagnetic one; Allegrozzi et al. 2000;

Bertini et al. 2001a, b, c; Bertini et al. 2003, 2004b;

Balayssac et al. 2008; Bertini et al. 2010a; Luchinat et al.

2012b) to, in principle, any protein.

Given the various possibilities and limited resources,

choosing the optimal set of observables for the charac-

terization of protein conformational heterogeneity is

important. In this work we analyze the information con-

tent associated with the two commonly used types of

experimental data (dRDC and paramagnetic data) and

discuss their features and advantages and pitfalls.

Specifically, we want to understand what information can

be recovered and to what extent. Importantly, the

methodology that we develop below is not limited to

dRDC or paramagnetic data, and can be applied to any set

of experimental observables.

Theory

Formulation of the ensemble problem

We focus on analyzing the ensemble information content

of three specific types of NMR restraints, dRDC, pRDC,

and PCS, in the case of proteins composed of two domains

connected by a flexible linker. We have used the two-do-

main protein calmodulin (CaM) as a test case.

As done previously (Bertini et al. 2007; Berlin et al.

2013), we assume that all three types of NMR restraints

considered here represent a population-weighted average

of the corresponding values for the individual conformers,

and therefore have a linear dependence on the ensemble

populations, such that

y ¼ a1x1 þ � � � þ aNxN þ e ¼ Ax þ e ð1Þ

where y is a length-L column vector representing the

experimental data (dRDC, pRDC, PCS, or some combi-

nation thereof), A is an L 9 N prediction matrix consisting

of N column-vectors aj (j = 1,…,N) representing the pre-

dicted data for each of the N conformers, xj is the popu-

lation weight for the jth conformer, and e is the difference

between y and Ax due to the presence of experimental

error. This assumption seems reasonable for pRDC and

PCS (Bertini et al. 2012c), whereas for dRDC the inter-

conversion between conformers can occur on a timescale

that could be comparable to the one of the interaction with

the alignment medium; additionally, the latter may perturb

the system.

Since in general recovering x from Eq. 1 is an ill-posed

problem, having an infinite number of solutions, we seek to

recover the minimum ensemble (sparsest solution) satis-

fying the experimental observables, which we express as a
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constrained linear least-squares problem (Berlin et al.

2013),

x� ¼ argmin
x

W Ax � yð Þk k2 s:t: x� 0; xk k0¼ M ð2Þ

where W is the weight matrix that non-uniformly weighs

the residuals between y and Ax, M is the desired ensemble

size, k…k2 is the Euclidian norm, and xk k0 is the l0 quasi-
norm of x, i.e. the number of nonzero elements in x. Typ-

ically the experimental errors are assumed to be uncorre-

lated, in which case W is simply a diagonal matrix with

Wii = 1/ri, where ri is the estimated experimental error of

the ith observation yi. For simplicity, for the rest of the

manuscript we will drop W from our equations by

assuming that A and y are already multiplied by W. In the

sparse ensemble selection (SES) method the ensemble size

is chosen by solving the problem for reasonable values of

M and using the L-curve to select the appropriate M value

(Berlin et al. 2013). A different approach was also applied,

based on the calculation of the maximum occurrence

allowed for each conformer (MaxOcc, see below; Bertini

et al. 2002a; Gardner et al. 2005; Longinetti et al. 2006;

Bertini et al. 2007, 2010b, 2012b, c; Luchinat et al. 2012a;

Andralojc et al. 2014).

Predicting RDC and PCS data

For steric dRDC data, we generate the prediction matrix

A using program PATI (Berlin et al. 2009, 2013), which

assumes the presence of a steric planar alignment medium

(Fig. 1a). Electrostatically induced RDCs were similarly

simulated using PALES (Zweckstetter 2008). The absolute

scaling in the predicted dRDC values is regulated by

changing the value of the parameter ‘‘liquid crystal con-

centration’’ (Zweckstetter and Bax 2000) that controls the

distance between the planar steric barriers. In the SES

model the absolute scaling of the predicted dRDC is treated

as an implicit parameter since the sum of all weights (
P

jxj)

is not constrained (Berlin et al. 2013).

For pRDC and PCS, without loss of generality, we can

assume that a metal ion tag is located on the first (rigid)

domain of the protein (Bertini et al. 2003). Therefore, the

position of the metal ion relative to that domain is the same

for all conformers. So, instead of performing the prediction

of pRDC and PCS values for both domains, we obtain the

prediction matrix A for a two-domain rigid system by first

deriving the magnetic susceptibility anisotropy tensor (and

metal ion’s position) from the experimental data for the

first domain, and then use these tensors to predict the

matrix A values for the second domain based on its posi-

tion relative to the first domain (Fig. 1b). This formulation

assumes that the distribution of the relative positions of the

two domains is independent of the orientation of the

magnetic susceptibility anisotropy tensor in the magnetic

field (Bertini et al. 2002a).

Given a specific conformer, the pRDC values in the A

matrix are thus predicted by first deriving the vector con-

taining the 5 independent components of the alignment

tensor, S*, directly from the experimental data for the first

domain:

S� ¼ argmin
S

V1S � y1k k2 ð3Þ

where V1 is a 5-column matrix, the elements of which

depend on the orientations of the normalized bond vectors

in the fixed frame (Losonczi et al. 1999; Valafar and

Prestegard 2004; Berlin et al. 2009; Simin et al. 2014) and

y1 are the observed experimental pRDC values for the first

domain. Then, using the derived S*, we predict the pRDC

for the second domain of the jth conformer (ApRDC,j) as

ApRDC;j ¼ V2jS
� ð4Þ

where V2j is the 5-column matrix of the bond vectors for

the second domain in the jth conformer.

Similarly, the PCS values for the first domain can be

used to derive the magnetic susceptibility anisotropy tensor

T*, represented by a 3 9 3 traceless symmetric matrix, and

the metal ion’s position p* (computed by alternating

between solving a non-linear least-squares problem for p*,

and a linear problem for T*). These values are then used to

predict the PCS for the second domain of the jth conformer

(APCS,j). The elements of the APCS,j vector are the PCSs

predicted for each nucleus i of the second domain,

according to the relationship

APCS;j;i �
1

12p rij
�
�
�
�5
2

tr

3r2ij;1 � rij
�
�
�
�2
2

3rij;1rij;2 3rij;1rij;3
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�
�
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where rij ¼ ½rij;1; rij;2; rij;3� is the vector connecting the

metal ion (located at p*) and the ith atom in the jth con-

former, and tr(…) designates the trace of a matrix. The

elements of the tensor T* and the components of the

alignment tensor S* are related to one another by a pro-

portionality constant (Bertini et al. 2002b), so that each of

the two can be easily calculated from the other.

Similarly to dRDC for multiple alignment media, pRDC

and PCS from multiple metal ion derivatives (determined

from the S* and T* tensors, respectively, of the corre-

sponding metals) can be combined together in a single

A matrix of predicted data.

Methods

Constraining SES ensemble populations

Since the scaling of the predicted dRDC values has an

uncertainty (Berlin et al. 2013), when recovering SES

ensembles using dRDC, we allow the total sum of x,
P

jxj,

to float, and only use the restraint x C 0 (see Eq. 2).

By contrast, the values of pRDC and PCS are deter-

mined without any adjustable scaling factor, and thus the

two datasets can be directly combined into a single popu-

lation-constrained pRDC ? PCS SES problem,

x� ¼ argmin
x

ypRDC

yPCS

� �

�
ApRDC

APCS

� �

x

�
�
�
�

�
�
�
�
2

s:t: x� 0;

X

j

xj � c; xk k0¼ M
ð6Þ

where c is the upper bound on the total population weight.

Since
P

jxj represents the total population weight
P

jxj
should be 1. However, we allow for the sum of the weights

to be\1, since we aim at recovering the sparsest ensemble

representing the major states (potentially there could be a

very large set of transient minor states). The validity of the

recovered solution can be evaluated from the geometrical

interpretation of pRDC: a solution is a convex combination

of a set of conformers such that the averaged pRDC belong

to the polyhedron with vertices in the conformers (see

Figure S5; Gardner et al. 2005; Longinetti et al. 2006).

Since the problem is underdetermined, there will be many

solutions, and the SES method chooses to limit the number

of vertices to M. In order to find a solution with this con-

straint, we need to use a c\ 1 in Eq. (6). This is equivalent

to shrinking the vertices of the polyhedron towards the

origin by a factor c and renormalizing the weighting factors

A
B

Fig. 1 Schematic illustration of the relationship between the confor-

mation of a multidomain protein and the alignment tensor for the two

experimental methods considered her (or: alignment tensor caused by

external and internal alignment). In the case of partial orientation

induced by external orienting media the alignment tensor changes for

different conformations of a two-domain protein (a) whereas in the

case of partial orientation induced by a paramagnetic metal ion

attached to the protein the alignment tensor is invariant with respect

to the orientation of the domain where it is attached (b)
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to 1. However, since the origin is an acceptable point

(Sgheri 2010a) and the set is convex, the shrunk vertices

will be anyway acceptable points. In other words, if c is

relatively close to 1, the conformers representing the ver-

tices are anyway good representatives of the conforma-

tional freedom of the system. Finally, the
P

jxj B 1

restraint prevents from finding unphysical solutions.

SES algorithm implementation

SES ensemble recovery was implemented using the multi-

orthogonal matching pursuit (MOMP) algorithm (Berlin

et al. 2013). We modified the MOMP method to handle the
P

jxj B c requirement using the active set method

(O’Leary 2009) to restrain our solution for each iteration of

MOMP. Given that there are two restraints on x: x C 0 and
P

jxj B c, during each iteration of the MOMP algorithm

there are four possible sets of active restraints: (1) no

restraints are active; (2)
P

jxj B c restraint is active; (3) the

x C 0 restraint is active; or (4) both x C 0 and
P

jxj -

B c are active. To summarize, the constrained least-squares

problem is solved as follows: update the solution using

conjugate gradient (CG) method; if the solution violates

x C 0 or
P

jxj B c, solve the linearly constrained linear

least-squares problem by using a ‘‘feasible direction’’

method (O’Leary 2009); if the solution still violates x C 0,

drop this solution from a list of possible solutions stored in

a priority queue. This procedure is repeated for all propa-

gated solutions from the previous iteration.

The time versus accuracy tradeoff in the MOMP algo-

rithm is controlled by how many top solutions, K, from the

current iteration are propagated to the next iteration of

MOMP (Berlin et al. 2013). In order to improve the

memory requirement for running SES using very large

K values ([106), we modified the algorithm used to solve

the overdetermined linear least-squares problem for each

iteration of SES, when a new solution must be computed

right after one new column is added to the list of active

columns [see Supporting Information in Berlin et al.

(2013)]. In the previous implementation (Berlin et al.

2013), the least-squares solution was efficiently updated by

doing a rank-1 update of the QR decomposition. However,

this approach requires us to store K QR decompositions

during each iteration. In our current updated version, we

switched to an iterative CG least-squares solver, which

requires that we only store the previous-iteration solution,

rather than the QR decomposition. This significantly

reduced the SES memory footprint for large K. The full AT

A matrix required for the CG algorithm is never explicitly

formed, and instead the multiplication step in the CG

algorithm is computed as AT(Ax). With the CG imple-

mentation we are able to run SES on a 10 GB RAM

desktop for K = 106, without any sacrifice in

computational time or accuracy, as compared to the pre-

vious implementation.

MaxOcc calculations

The maximum occurrence (MaxOcc) of each and every

conformer is defined as the maximum weight that it can

obtain when part of a conformational ensemble without

violating the constraints of the experimental data. No

restriction is posed on the number of conformations to be

included in the ensemble. Maximum occurrence (MaxOcc)

can be interpreted as the maximum fraction of time that a

conformation can exist, when taken together with any

ensemble of conformations with optimized weights

(Longinetti et al. 2006; Bertini et al. 2007; Sgheri 2010b;

Bertini et al. 2010b; Das Gupta et al. 2011; Luchinat et al.

2012a; Bertini et al. 2012b, c; Cerofolini et al. 2013).

We formulate MaxOcc as a convex regularization

problem, where for each conformer j we find the weight

vector x which minimizes

argmin
x

Ax � yk k22þkðxj � xMOÞ2
n

þk 1� xMO �
XN

i¼1;i6¼j

xi

 !2
9
=

;
s: t: x� 0

ð7Þ

where xMO is the desired weight of the conformation j, and

k is a weighting factor. The calculations are repeated for

increasing values of xMO; the MaxOcc of conformation j is

defined as the highest xMO providing a value of the

expression in Eq. 7 not exceeding the minimum value by

more than a prefixed threshold, for example 20 %. The

value of k was fixed to 15, as found with the L-curve

method, as a compromise between a good fit of the

experimental observables and the proximity of the sum of

the weights to 1. A frugal coordinate descent algorithm,

combined with random coordinate search (Nesterov 2012),

is used to solve Eq. 7.

Calculations are also performed to determine the max-

imum occurrence of a region (MaxOR) defined in the

conformational space of the protein (Andralojc et al. 2014).

The MaxOR, similar to MaxOcc, is defined as the maxi-

mum weight that a region in conformational space (com-

posed of multiple structures) can have in an ensemble

without causing a violation of the experimental restraints.

First, the highest-MaxOcc structures are clustered accord-

ing to their positions using a k-means algorithm as

implemented in the Python library SciPy (Jones et al.

2001). The number of clusters is set to the highest value

yielding reproducible clustering by the algorithm. Once the

clusters are built, small regions are defined around the

centers of the clusters, which include all conformations
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within a given distance D from the center of the cluster.

The MaxORs of these regions are determined by solving

argmin
x

Ax � yk k22þk xMO �
X

i2C
xi

 !2
2

4

8
<

:

� 1� xMO �
X

i2D
xi

 !2
3

5

9
=

;
s:t: x� 0

ð8Þ

where xMO is the fixed value that must correspond to the

sum of the weights of all conformations within the region,

and C and D indicate the structures within and outside that

region, respectively. Again, the largest xMO providing a

good fit of the experimental data defines the maxOR of the

region.

Results and discussion

An important theoretical question that we would like to

answer a priori, before performing any time-consuming

simulation or experiment, is how much information for

ensemble recovery is contained in dRDC versus pRDC

versus PCS and in dRDC versus pRDC ? PCS combined.

For example, intuitively, dRDC should contain more

information than pRDC, since dRDC contain shape/size-

related information, while the relative informational con-

tent of PCS is harder to intuitively quantify. To what extent

combining pRDC with PCS yields better results than each

of these data separately? Is the information provided by

pRDC ? PCS similar to that provided by dRDC? Would

using several different metal ions be needed to obtain

results comparable to those obtained with multiple sets of

dRDC, or do they produce a better set of experimental data

for the characterization of the conformational

heterogeneity?

In order to answer these questions, we analyzed several

algebraic properties of eight experimentally feasible data-

sets: (1) single-alignment medium dRDC; (2) single-metal

ion pRDC; (3) single-metal ion PCS; (4) single-metal ion

pRDC ? PCS combined; and (5–8) datasets analogous to

(1–4) but with three alignment media or thee metal ions.

We will refer to the one and three media/metal ions data-

sets as the one- and three-restraint datasets, respectively.

The datasets were generated for a pool of 32723 con-

formers of calmodulin (CaM), a protein composed of two

rigid domains connected by a 4-residue flexible linker

(Barbato et al. 1992; Tjandra et al. 1995; Chou et al. 2001;

Kukic et al. 2014). This large pool of sterically allowed

conformations of the protein was taken from reference

(Bertini et al. 2010b), where it was generated using the

program RanCh (Bernadò et al. 2007), For each conformer

and for each aligning medium or metal ion, a set of dRDCs,

pRDCs, and PCSs was generated, as described in the

‘‘Theory’’ section.

Simulated PCS and pRDC data

The paramagnetic restraints consisted of PCS of the amide

H atoms and pRDC of amide N–H pairs of the C-terminal

domain of CaM induced by the presence of a paramagnetic

center in its N-terminal domain. Three metals with non-

coinciding magnetic susceptibility tensors (corresponding

to the experimental ones obtained for Tb(III), Tm(III), and

Dy(III) CaM) were used to generate three sets of PCSs (132

observations in total) and pRDCs (112 observations in

total). The magnetic susceptibility anisotropy tensors were

taken from reference (Bertini et al. 2009).

Simulated dRDC data

The simulated diamagnetic restraints were amide 15N-1H

dRDCs (219 in total) induced in both CaM domains by 3

independent external alignment media: flat uncharged

discs and either positively or negatively charged rods. In

the first case, dRDCs were generated using PATI (Berlin

et al. 2009), in the other cases using PALES (Zweck-

stetter and Bax 2000; Zweckstetter 2008). In both cases,

the calculation of the alignment tensors, and of the

corresponding dRDC, are performed under the assump-

tion that the protein’s conformations are rigid during the

time course of its interaction with the alignment med-

ium. As a word of caution we note that every interaction

of a protein with the alignment medium might actually

perturb its conformation, and these interactions can

occur on a timescale that is slower than the conforma-

tional averaging itself. The assumption that the averaged

dRDCs correspond to a weighted average of the RDCs

calculated for the individual conformations, although

universally used, might fall short in representing the real

physical picture.

SVD of prediction matrices

The first and simplest analysis we performed was aimed at

evaluating the theoretical information content of the eight

different datasets described above. This was done through

the spectral analysis of the prediction matrix A for each

dataset. The spectral analysis measures the number of

significant linearly independent components present in the

data, by counting the eigenvalues corresponding to linearly

independent eigenvectors. This directly provides an upper

bound on the number of independent conformers we can

hope to extract. Trying to recover a larger number of
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independent conformers would result in overfitting. The

results are shown in Fig. 2a, d.

As shown in Eq. 3, any vector of RDC values (either

pRDC or dRDC) from a rigid domain can be expressed as a

matrix V, which can be determined from the orientations of

the bond vectors of that domain, multiplied by the 5

independent components of the alignment tensor matrix.

Since there is a linear dependence of the observed data on

the 5 components of the alignment tensor, we expect the

A matrix for dRDC to have rank 10 (5 independent

parameters for each of the two domains), and for pRDC to

have rank 5, since only the second domain data are used for

ensemble recovery. The number of unknowns in the para-

magnetic case is also smaller because the alignment tensor

for the first domain (5 parameters) can be easily determined

from PCS and pRDC measured for this domain, as they are

not averaged by conformational variability.

Numerical spectral analyses of the generated prediction

matrices for dRDC and pRDC (Fig. 2a, d) support our

theoretical analysis, and show that the number of singular

values of matrix A for one-restraint dRDC and pRDC data

is 10 and 5, respectively. Going from 1 to 3 alignment

tensors triples the number of non-zero singular values for

dRDC and pRDC, as would be expected for linearly

independent alignments. The large decrease in the magni-

tude of singular values for the last 10 dRDC and 5 pRDC

non-zero singular values in the three-restraint datasets

likely reflects the difficulty in experimentally obtaining

three fully independent alignment tensors. The larger

magnitudes of dRDC singular values compared to the

singular values for pRDC are not related to their infor-

mation content, but merely reflect the relative strength of

diamagnetic versus paramagnetic alignment in the simu-

lated data. On the contrary, it is the decrease in the relative

magnitude of the singular values with respect to the largest

value, calculated from a set of data, that reflects the diffi-

culty in exploiting the associated restraints, and is hence

ultimately related to the information content.

Similarly, the observed PCS data for a rigid domain

which is not containing the paramagnetic ion (i.e. for the

second domain) can be expressed using 8 parameters: the 5

independent components/parameters defining the T tensor,

and the 3 parameters describing the metal-ion’s position

p with respect to this domain. However, since the observed

PCS vector y is not linearly related to p, the rank of APCS

(calculated from the PCSs in the second domain) is much

higher than 8, and greater than that for dRDC or pRDC

datasets. The rank of APCS is actually close to (up to) the

Fig. 2 SVD decomposition (left panels), histogram of column

correlations (center panels), and condition number of randomly

subselected set of columns (right panels), for the eight described

datasets. The results for a single medium/metal ion are shown on the

top, and the results for the 3 media/metal ions are shown on the

bottom. a–d The 35 largest singular values of the associated

A matrices. b–e The distribution of the uncentered correlations

between all pairs of columns in the A matrix, estimated by performing

20,000 random samples. c–f The expected mean and SD of the

relative error for recovering population weights from an arbitrary

M = 1,…,10 subset of columns
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number of observations; however as Fig. 2a, d show, the

magnitude of the singular values decreases very rapidly.

This decrease reflects the strong difference in the PCS

values between conformers where the C-terminal (second)

domain is close to the metal ion (paramagnetic center) and

those where it is far away. After the first &15 entries, in

the one-restraint case the singular values are very small

because similar PCS values are calculated for conformers

not very far from one another and for nuclei which are

spatially close to several other nuclei. When using three

sets of metal ions, the number of conformers with large and

different PCS values increases. Thus, the decrease in the

magnitude of the singular values is significantly slower

than in the case of a single metal ion (Fig. 2a–d).

One major advantage of using metal ions instead of

steric alignment is that both pRDC and PCS are collected

from the same biochemical construct. Thus, two indepen-

dent datasets can be directly combined, as described in

Eq. 6. When combining these datasets, a significantly

slower decay in singular values of A is obtained compared

to the pRDC and PCS datasets analyzed independently.

This supports the accepted intuition that pRDC and PCS

provide orthogonal structural restraints (pRDCs are very

sensitive to orientation, PCSs mostly provide distance

restraints).

Histograms of prediction matrices

The spectral analysis of the A matrices suggests that

pRDC ? PCS and even PCS alone provide better restraints

for ensemble selection than dRDC. However, singular

values are not an exhaustive description of the overall

vector distribution. Therefore, we directly analyzed the

distribution of correlations between all columns of the

matrix A calculated for dRDC, pRDC, and PCS. The

uncentered correlation distributions between all pairs of

columns are shown in Fig. 2b, e. The more uncorrelated the

columns of each specific A (AdRDC, ApRDC, APCS) the

smaller the chance that an alternative conformer can

explain the same subset of experimental data, thus

decreasing the number of viable alternative ensembles. In

the optimal case, all columns would have zero correlation,

and the ensemble solution would be unique.

Figure 2b, e clearly demonstrate that even though the

number of singular values of PCS is larger than that of

dRDC and pRDC, the correlation distribution is actually

significantly worse than for any other dataset, so that their

information content could not be larger. The higher cor-

relation for large fraction of the conformers reflects a dis-

tribution of PCS where very large changes occur in

proximity of the metal ion only, whereas almost no change

occurs far away from the metal ion. Additional metal ions

can significantly improve the distribution of correlations,

although it remains poor with respect to that of the other

restraints.

Since pRDCs are distance-independent, they provide a

more uniform distribution of values, so that their correla-

tion distribution is much better than for PCS. The pRDC

distribution is anyway worse than that of dRDC in the one-

restraint case; it significantly improves, essentially to the

level of dRDC, in the three-restraint case. Interestingly, the

dRDC distribution changes only slightly between one and

three restraints, which suggests that the information con-

tained in the additional dRDC datasets is more redundant

than in the pRDC case.

Combining pRDC with PCS results in a better correla-

tion distribution than for pRDC and PCS individually. In

turn, the correlation distribution of pRDC ? PCS is very

similar to that of dRDC in the one-restraint case and

actually somewhat better in the three-restraint case.

Expected relative error

While the correlation plots in Fig. 2b, e provide an estimate

of the A matrix column vector distribution, they do not

directly tell how well ensembles greater than two can be

recovered, nor do they take signal-to-noise ratio into

account. To assess how well larger ensembles can be

recovered, we computed the mean and standard deviation

(SD) of the relative error from a synthetically generated

y data (with added Gaussian error) for M = 1,…,10 col-

umns. The mean and SD were computed by randomly

sampling, for each M value, M columns and uniformly at

random generating the associated population weights

x. The synthetic y was generated as y = Ax ? N(0,1),

where N(0,1) is the zero-mean Gaussian distribution with

r = 1. The vector x* and the associated relative error,

||x - x*||2/||x||2, were recovered by solving Eqs. 2 and 6. In

order to guarantee a\0.1 % relative error with[99.999 %

confidence using Chernoff bound, the process was repeated

40,000 times for each M. The results for all datasets are

shown in Fig. 2c, f.

For the one-restraint datasets, dRDC has lower relative

error than pRDC, PCS, or pRDC ? PCS. As expected,

there is a rapid growth in pRDC errors due to the low

matrix rank, and high errors overall in PCS due to the high

correlation between columns. In the case of the three-re-

straint datasets, dRDC has significantly lower relative error

than pRDC, even though on the correlation plot the two

distributions are very similar. Interestingly, combining

pRDC ? PCS yields only slightly higher error rate than for

dRDC.
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Recovering the conformational variability

from synthetic datasets

In the previous sections we theoretically analyzed the

information content of 8 datasets of synthetic dRDC,

pRDC and/or PCS data. Here we perform a direct com-

parison of the performance of the different restraints in

recovering information on the structural variability of the

system. To achieve this, we determined (1) the minimum-

size sparsest ensemble solution using the SES method

(Berlin et al. 2013) and (2) the conformations (as well as

the regions in the conformational space) with the highest

MaxOcc values. In this way it becomes possible to analyze

the accuracy of the recovered solutions from the different

sets of synthetic averaged data.

For this purpose, we devised three simulations modeling

(1) extensive mobility around a single conformation, (2)

two-site exchange with limited mobility around each cen-

ter, and iii) two-site exchange with a reduced difference in

the orientations of the two centers. In each of the simula-

tions, the two-domain protein CaM was allowed to sample

different, well defined, parts of its sterically allowed con-

formational space. Synthetic restraints were calculated as

weighted averages over the values of dRDC, pRDC, and

PCS of the individual conformations belonging to the

sampled regions. These average data were perturbed with a

Gaussian error with a SD of 1, 2, or 3 Hz for pRDC and

dRDC and of 0.01, 0.02, or 0.03 ppm for PCS.

In the following descriptions of the simulated confor-

mational ensembles, the N-terminal domain of CaM is

taken as the frame of reference, and each conformation is

described by the different position and orientation of the

C-terminal domain with respect to the N-terminal domain.

The exact details of each simulation, although described

accurately for completeness, are not crucial for the success

of the ensemble recovery attempts.

Simulation 1

In this first simulation we consider the case of conforma-

tional variability centered at a single extended conforma-

tion of CaM. The sampled ensemble consists of all the

conformers, present in the pool of the 32723 sterically

allowed conformers, within a distance D (measured as a

combination of translation and rotation) from the central

extended structure (Fig. 3a; Bertini et al. 2012b). Specifi-

cally, this distance is defined as:

D ¼ d þ f ð1� cos aÞ ð9Þ

where d is the translation of the center of mass of the

C-terminal domain from the central structure, and a is the

angle of rotation from the central structure, calculated as

a = arccos (|qc � q|), where qc and q are the unitary

quaternions describing the central structure and the other

structure. Note that the two structures are actually 2a apart

in Cartesian space (Kuffner 2004). D defines the largest

allowed spatial displacement (when a is 0) and the largest

allowed rotation (when d is 0; it also depends on the factor

f) from the position of the central conformer. In the present

simulation, conformations with D up to 30 Å (a reasonable

estimate for this system) were accepted and the value of

f was set to 84 Å. In this way, the conformers in the con-

structed ensemble can have the center of mass of the

C-terminal domain at a maximum distance of 30 Å with

respect to the conformer at the center of the distribution, if

they have the same orientation (the distance decreases with

increasing the difference in the orientation). Their C-ter-

minal domain can be rotated up to 100� (a = 50�) with

respect to the central conformer, if there is no translation of

Fig. 3 The simulated ensembles. Different positions of the C-termi-

nal domain of CaM are represented by a triad of Cartesian axes,

centered at the center of mass of the C-terminal domain. The

conformers are color coded according to their relative weights (form

red = high weight to blue = low weight). a Simulation 1, b Simu-

lation 2, c Simulation 3. The ensembles are shown from two different

points of view in the left and right panels. All the conformers are

superimposed by the N-terminal domain, which is shown in cartoon

representation
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the center of mass (and gradually less and less as the

translational component increases). The weight of each

conformation in the ensemble depends on its D, and is fixed
according to a Gaussian distribution centered at D = 0,

with SD chosen to provide weights close to zero when D is

close to 30 Å.

Simulation 2

This simulation models the case of a two-site exchange,

with limited mobility allowed around each of the two main

conformers (Fig. 3b). The two centers were separated by

approximately 30 Å and their C-terminal domains were

rotated by ca. 140� with respect to each other. The mobility

around each center was simulated as in the previous case

with the threshold on D set to 10 Å and f equal to 42.7 Å,

which corresponds to a maximum allowed angular dis-

placement with respect to the central conformer of 80�
(a = 40�).

Simulation 3

This simulation is similar to Simulation 2, with the dif-

ference that the angular distance between the two sites was

decreased almost twofold (Fig. 3c). Sites with more similar

orientations are likely to present a bigger challenge in

ensemble recovery using restraints which depend on the

domain orientations. The distance between the centers

(both distinct from those used in Simulation 2) is 30 Å

while the difference in orientation of the C-terminal

domains is now 80�. The threshold of D and the value of

f used to simulate the residual mobility around each center

were the same as in Simulation 2, hence the same upper

limit on the angle a.

SES ensembles

We applied the SES method to these simulated datasets and

analyzed how the various restraints affect the recovery of

the main conformations contained in the synthetic ensem-

bles used to generate the data. The recovered ensembles

were evaluated in terms of their sizes (number of major

states) and of the proximity of recovered structures to the

centers of the synthetic ensembles (in terms of spatial and

angular displacement). As already mentioned in the

‘‘Theory’’ section, the ensemble size was chosen using the

L-curve method (Berlin et al. 2013; see Figure S6).

The results are presented in Tables 1, 2 and 3. In gen-

eral, dRDCs allowed a reasonably accurate recovery of the

major states that were used to generate the synthetic

datasets (see, for instance, Fig. 4a). However, in all three

simulations, in some solutions one additional conformer

was recovered, albeit with a relatively low weight. This

additional conformer either belongs to the distribution of

conformers around one of the main centers (as in Simula-

tion 1 with error of 1 and 2 Hz, and in Simulation 2 with

error of 2 Hz, Fig. 4b) or is positioned in-between the two

major states (as in Simulation 2 with error of 1 Hz,

Fig. 4c). In the first case its presence may reflect confor-

mational heterogeneity; in the second case it is likely

related to artifacts. The latter may arise because, ‘average

conformers’ can be more compatible with the averaged

experimental observables than any of the actually sampled

conformations taken individually.

Table 1 Results of Simulation 1

Simulation 1 Ensemble Conformer 1 Conformer 2

Restraint Error Ensemble

size

Total

weight

Weight

conformer 1

Weight

conformer 2

Translation

(Å)

Rotation

(�)
Translation

(Å)

Rotation

(�)

PCS 0.01 ppm 1 0.792 0.792 – 3.85 15.6 – –

0.02 ppm 1 0.799 0.799 – 3.85 15.6 – –

0.03 ppm 1 0.771 0.771 – 3.85 15.6 – –

dRDC 1 Hz 2 0.866 0.663 0.203 3.85 15.6 12.78 107.3

2 Hz 2 0.839 0.482 0.356 8.68 22.4 6.34 39.5

3 Hz 1 0.755 0.755 – 3.85 15.6 – –

pRDC 1 Hz 1 0.598 0.598 – 10.48 11.8 – –

2 Hz 1 0.597 0.597 – 10.48 11.8 – –

3 Hz 1 0.608 0.608 – 14.01 15.6 – –

pRDC ? PCS 1 Hz/0.01 ppm 1 0.755 0.755 – 3.85 15.6 – –

2 Hz/0.02 ppm 1 0.761 0.761 – 3.85 15.6 – –

3 Hz/0.03 ppm 1 0.742 0.742 – 3.85 15.6 – –

The table reports the sizes of the recovered ensembles, the specific weights ascribed to their constituent conformers, and for each of these

conformers their spatial and angular displacement from the center of the original ensemble
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In the case of pRDCs, the right number of major states

was always recovered (Fig. S1), and in the corresponding

conformers the domains were oriented with an accuracy

comparable to that achieved with dRDC. It should be

recalled that pRDCs contain no information whatsoever on

the relative positions of the domains, which therefore

results in inaccuracy of their positioning.

PCS data alone in two out of three simulations were

sufficient to recover the correct solutions (Fig. S2) in terms

of ensemble sizes and locations of the major states (with

the accuracy similar to dRDC). However in Simulation 3,

where the two states are more alike to one another, the

calculations provide only a single state (Fig. S2B) situated

in-between the two actual centers (in terms of both trans-

lation and orientation). The recovery of such an incorrect

state is most likely, as already mentioned for dRDC, the

outcome of the averaging of the experimental observables.

Using all the paramagnetic data together (i.e. pRDC and

PCS) improved the robustness of the recovery: both

translations and orientations were satisfactory accurate in

all cases (Fig. 5). The translation and rotation with respect

to the conformers at the center of the distributions were

within 4 Å and 16� for Simulation 1, 8 Å and 34� for

Simulation 2, and 3 Å and 18� or 7 Å and 9� for Simula-

tion 3 (1 Hz and 0.01 ppm error case). The ensemble

recovery is robust, as increased errors did not noticeably

affect the accuracy of solutions.

In conclusion, diamagnetic RDC, as well as the com-

bination of paramagnetic RDC and PCS, are both equally

suitable restraints for the recovery of the major states

present in conformational ensembles. Special attention

should be paid to the fact that, occasionally, ‘average

conformers’ may be recovered.

MaxOcc analysis

Similar to the SES analysis, we performed MaxOcc anal-

ysis on the same datasets. From the MaxOcc values, it is

Fig. 4 SES recovery using dRDC data. Color code for the C-terminal

domain: green—simulated conformers in the centers of the regions,

red, blue, and yellow—reconstructed conformers with highest,

intermediate, and lowest weight, respectively. a An ensemble with

correctly recovered major states (Simulation 3, 3 Hz error), b An

ensemble with an additional state present next to one of the centers

(Simulation 2, 2 Hz error), c An ensemble with an additional state

(yellow) recovered (Simulation 2, 1 Hz error). The ensembles are

shown from two different points of view in the left and right panels.

All conformers are superimposed by the N-terminal domain

Fig. 5 SES recovery with all the paramagnetic data. Color code for

the C-terminal domain: green—simulated conformers in the centers

of the regions, red, blue—reconstructed conformers with higher and

lower weight, respectively. a Simulation 1, b Simulation 2, c Simu-

lation 3, with 0.03 ppm and 3 Hz errors. The ensembles are shown

from two different points of view in the left and right panels. All

conformers are superimposed by the N-terminal domain
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possible to determine which conformers can be sampled

with the largest weights. In order to speed the computa-

tional analysis up, we used random sampling to detect

regions of with potentially high MaxOcc conformers, and

then expanded those regions, to find the globally best

solution. To do this, we first computed MaxOcc for 400

conformers, randomly chosen from the generated pool

(Bertini et al. 2010b, 2012b; Cerofolini et al. 2013). Then

the conformers with the highest MaxOcc (up to 0.8 of the

MaxOcc of the highest scoring conformer) were selected

and the MaxOcc of their neighboring conformers (in the

conformational space) were calculated. The procedure was

repeated until no more neighbors with high MaxOcc were

found. The neighboring conformers scored at each iteration

were chosen using Eq. 9 with the threshold on D of 5 Å

and f = 40 Å. If the final distribution of the highest

MaxOcc conformers was broad, the analysis was supple-

mented by the maximum occurrence of regions (MaxOR)

approach, which permitted to discriminate between the

cases of high MaxOcc conformers corresponding to con-

formers actually sampled by the protein and the cases of

high MaxOcc conformers corresponding to conformers

arising from data averaging (Andralojc et al. 2014).

The results of the MaxOcc analysis are reported in

Table 4 for all three simulations. In Simulation 1, for both

the paramagnetic and diamagnetic data, the analysis

revealed that all the conformers with the highest MaxOcc

(from 0.8 to 1 of the highest MaxOcc, corresponding to

0.58–0.73 for the paramagnetic data and 0.57–0.71 for the

dRDC) form a single, relatively compact, region in the

conformational space (Fig. 6a, c). In order to quantify its

agreement with the original distribution, the center of the

region was calculated by averaging the translational and

orientation parameters of the highest MaxOcc conformers.

The conformation so obtained was then compared with the

conformation at the center of the original distribution. As

shown in Table 4 and Fig. 6b, d, the agreement was very

good in terms of spatial and angular displacement for both

the diamagnetic and the paramagnetic data, either for 1 Hz/

0.01 ppm or for 3 Hz/0.03 ppm errors.

In simulation 2, i.e. the case of two well separated

conformational regions, when dRDC are used, the highest

MaxOcc conformers are positioned in two distinct, clearly

separated regions (Fig. 7a), the centers of which are posi-

tioned very close to the centers of the actually sampled

distribution (Table 4; Fig. 7b). When paramagnetic data

(PCS ? pRDC) are used, the highest MaxOcc (0.41–0.51)

conformers are positioned in one elongated, banana-shape

region in the conformational space (Fig. 8a), which

includes the two actually sampled centers, but also many

conformers situated between them (their high score is an

outcome of conformational averaging as described in the

SES results paragraph). From these results, one cannot

conclude whether the studied conformational ensemble

mainly reflects a two-site exchange case or the sampling of

all the conformations within the determined region. In

order to distinguish between these two cases, MaxOR

calculations were performed. The highest MaxOcc con-

formers were clustered in 5 regions, shown in Fig. 8b,

which include all conformations with distance D B 5 Å

from the central conformation (calculated using eq. 9, with

f = 147 Å). The MaxOR values for these regions are

Table 4 The MaxOcc/MaxOR analysis

Simulation Restraint Error Recovered center 1 Recovered center 2

Closest

center

Translation

(Å)

Rotation

(�)
Closest

center

Translation

(Å)

Rotation

(�)

Simulation 1 dRDC 1 Hz – 3.42 5.7 – – –

3 Hz – 2.65 10.3

pRDC ? PCS 1 Hz/0.01 ppm – 4.72 9.1 – – –

3 Hz/0.03 ppm – 4.16 9.5 – – –

Simulation 2 dRDC 1 Hz A 3.44 4.4 B 1.71 25.5

3 Hz A 3.27 9.7 B 3.26 29.8

pRDC ? PCS 1 Hz/0.01 ppm* A 4.42 14.4 B 1.02 28.1

3 Hz/0.03 ppm A 7.15 25.1 B 6.60 24.7

Simulation 3 dRDC 1 Hz* A 0.99 14.3 B 8.17 16.6

3 Hz A 5.32 28.9 B 5.35 16.0

pRDC ? PCS 1 Hz/0.01 ppm* A 4.39 10.8 B 3.57 31.4

3 Hz/0.03 ppm A 5.45 9.9 B 5.80 40.3

For each simulation the spatial and angular displacement of the center of the ensemble of the best scoring conformers from the center of the

actually sampled distribution is reported, together with the indication of the closest site, if applicable. The cases where MaxOR was used are

indicated with an asterisk next to the error level
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reported in Table S1 (diagonal entries). All regions have

similar MaxOR values (up to 0.60), not much higher than

the largest MaxOcc values for the individual conforma-

tions. If however MaxOR values are calculated for pairs of

regions (off-diagonal entries of Table S1), strong differ-

ences arise. All pairs yielding the highest MaxOR

(0.90–1.00) are composed of regions at the opposite sides

of the distribution of the highest MaxOcc conformers,

whereas all pairs composed of the regions located on the

same side of the distribution or more importantly con-

taining a region in the middle, have significantly lower

MaxOR (up to 0.63 and 0.78, respectively). This strongly

suggests the occurrence of a two-site exchange model. The

bFig. 6 MaxOcc results for Simulation 1. Each conformation is

represented by a triad of Cartesian axes, centered at the center of mass

of the C-terminal domain. Color code for a, c—according to the

MaxOcc value (0.0—blue, 0.8—red), a The conformers with the

highest MaxOcc recovered with the paramagnetic data (with error of

1 Hz for pRDC and 0.01 ppm for PCS), b The center of the

distribution shown in panel a (red) versus the center of the simulated

region (black), c The conformers with the highest MaxOcc recovered

with dRDC (with error of 1 Hz), d The center of the distribution

shown in panel c (red) versus the center of the simulated region

(black). The results are shown from two different points of view in the

left and right panels. All conformers are superimposed by the

N-terminal domain, shown as a ribbon

Fig. 7 MaxOcc results for Simulation 2 with dRDC with error of

1 Hz. Each conformation is represented by a triad of Cartesian axes,

centered at the center of mass of the C-terminal domain. a The

conformers with the highest MaxOcc, color code: according to the

MaxOcc value (0.0—blue, 0.6—red). b The center of the distribution

shown in panel a (red) versus the center of the simulated region

(black). All conformers are superimposed by the N-terminal domain,

shown as a ribbon
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pair of regions with the highest MaxOR has their central

conformations in nice agreement with the conformations in

the center of the distributions in the synthetic ensemble,

with an accuracy comparable to that obtained by SES

(Table 4; Fig. 8d).

In simulation 3, for both the paramagnetic and dia-

magnetic data, the conformers recovered by MaxOcc form

elongated regions comprising both the two centers and

conformers situated between them (Figs. S3A and S4A).

MaxOR was thus applied in both cases. As in the previous

simulation, no single region has MaxOR significantly

higher than the others, but the analysis of pairs of regions

indicated again the occurrence of a two-site exchange

(Tables S2 and S3). The two central conformations of the

synthetic ensemble were identified with good accuracy

(Table 4; Figs. S3D and S4D) using both kinds of experi-

mental restraints. Again, the results are robust, as increased

errors did not largely affect the accuracy of the solutions.

The performed MaxOcc/MaxOR analysis, as it appears

from Table 4 as a whole, confirms the conclusion from the

SES results that paramagnetic and diamagnetic restraints

are equally useful for the recovery of conformational

ensembles.

Conclusions

In many experimental studies RDCs have been shown to be

precious restraints for analyzing molecular conformational

freedom (Montalvao et al. 2014; Ravera et al. 2014;

Camilloni and Vendruscolo 2015; Torchia 2015). Here we

compared paramagnetic and diamagnetic RDCs and found

substantial differences in their information content in the

case of multidomain proteins. We found that the informa-

tion content of dRDC is larger than that of pRDC in terms

of number of singular values, and this reflects the shape

dependence of dRDC. However, since the internal align-

ment due to paramagnetism also gives rise to PCSs, the

total informational content recovered in a paramagnetic

experiment is at least on par with dRDCs.

We have performed several simulations to evaluate the

capability of recovering the conformational variability of

two-domain proteins by the use of two different approa-

ches, SES and MaxOcc/MaxOR. The main states of the

protein were recovered reasonably well for both param-

agnetic and diamagnetic datasets, with both approaches

(see Tables 1, 2, 3, 4 and also Table S4). Even for rather

large experimental errors, we have found that both datasets

still retain the ability of recovering the main conforma-

tional states, thus resulting appealing for the analysis of

averaged experimental data possibly also in the case of

large systems, where RDCs are affected by large errors. Of

course, since the problem is underdetermined, a correct

reconstruction of the main states may be unsuccessful for

different rather unpredictable conformational distributions.

Such analysis suggests that pRDC ? PCS provide a

very promising alternative to dRDC data. It is important to

note that this analysis does not include modeling error,

which is harder to quantify. Therefore, our analysis does

not capture the principal advantages of pRDC ? PCS over

Fig. 8 MaxOcc/MaxOR results for Simulation 2 with paramagnetic

data (1 Hz error for pRDC and 0.01 ppm error for PCS). Each

conformation is represented by a triad of Cartesian axes, centered at

the center of mass of the C-terminal domain. a The conformers with

the highest MaxOcc, color code—according to the MaxOcc value

(0.0—blue, 0.6—red). b The five clusters formed by the conformers

in panel a. c The centers of the clusters. d The centers of clusters with

the largest MaxOR versus the centers of the simulated regions (black).

All conformers are superimposed by the N-terminal domain, shown as

a ribbon
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dRDC, in that it does not require assumption of a barrier

model in order to predict the alignment. In addition, one

has to consider that the interactions of the protein with the

alignment medium might actually perturb the system, and

that these interactions can occur on a timescale that is

slower than the conformational averaging itself, so that the

assumption that the measured dRDCs can be represented as

a population-weighted average of the RDCs for the indi-

vidual (rigid) conformers may fall short in representing the

real physical picture.

Finally, the availability of a number of rigid lanthanide-

binding tags nowadays may make the acquisition of three

independent metal ion datasets more practical and safer

than the acquisition and prediction of three independent

alignment media. One current limitation of using metal

ions is the low signal-to-noise ratio in pRDC and PCS data,

which could potentially be improved with better technol-

ogy and methodology.
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